COPYRIGHT©广州慧正云科技有限公司 www.hzeyun.com 粤ICP备18136962号 增值电信业务经营许可证:粤B2-20201000
Researchers from the Fraunhofer IKTS have developed a method of creating biogenic construction materials based on cyanobacteria.
The bacteria multiply in a nutrient solution, driven by photosynthesis. When aggregates and fillers such as sand, basalt, or renewable raw materials are added, rock-like solid structures are produced. Unlike traditional concrete production, this process does not emit any carbon dioxide, which is harmful to the environment. Instead, the carbon dioxide is bound inside the material itself.
The construction industry has a problem. Cement, the main component in concrete — arguably the most-used construction material of our time — is bad for the climate. CO2 emissions from cement production are very high. According to the German Environment Agency (UBA), in 2018 cement production accounted for some 20 million metric tons of CO2 emissions in Germany alone. That’s equivalent to about ten percent of all industrial emissions.
Researchers from the Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Fraunhofer Institute for Electron Beam and Plasma Technology FEP are now introducing an eco-friendly, biologically induced method of producing biogenic construction materials as part of the “BioCarboBeton” project. Not only does the process not emit any carbon itself; on the contrary, the climate-damaging gas is used for the process and then bound inside the material.
The centerpiece of the new method are cyanobacteria, formerly known as blue-green algae. These bacterial cultures are capable of photosynthesis. As light, moisture, and temperature interact, they form structures known as stromatolites made from limestone. These rock-like biogenic structures have existed in nature for 3.5 billion years, which attests to the resilience and durability of this biological process. Just like back then, CO2 is captured from the atmosphere as part of the mineralization process and then bound in the biogenic rock.
The Fraunhofer researchers have succeeded in mimicking this natural process with a technological method. Under the project management of initiator Dr. Matthias Ahlhelm, who also contributed the idea, Fraunhofer IKTS is developing materials and processes, selecting potential fillers as well as binding agents, and providing the form and structure. Researchers at Fraunhofer FEP, led by Dr. Ulla König, are establishing the methods of culturing the cyanobacteria, the complementary microbiological analysis, and the upscaling of the biomass production to be achieved.
慧乐居欢迎您关注中国家居产业,与我们一起共同讨论产业话题。
投稿报料及媒体合作
E-mail:luning@ibuychem.com